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The neural computation of inconsistent choice
behavior
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Humans are often inconsistent (irrational) when choosing among simple bundles of goods,
even without any particular changes to framing or context. However, the neural computations
that give rise to such inconsistencies are still unknown. Similar to sensory perception and
motor output, we propose that a substantial component of inconsistent behavior is due to
variability in the neural computation of value. Here, we develop a novel index that measures
the severity of inconsistency of each choice, enabling us to directly trace its neural correlates.
We find that the BOLD signal in the vmPFC, ACC, and PCC is correlated with the severity of
inconsistency on each trial and with the subjective value of the chosen alternative. This
suggests that deviations from rational choice arise in the regions responsible for value
computation. We offer a computational model of how variability in value computation is a
source of inconsistent choices.
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fundamental axiom in neoclassical theories of choice
behavior is that the decision-maker is consistent in her
choices. For example, if a decision-maker chooses some
combination of milk and cookies (bundle A) over another com-
bination of milk and cookies (bundle B) and also chooses bundle
B when a third bundle C was available, then—if she is consistent
in her choices—she should not strictly prefer bundle C over
bundle A in any subsequent choice. Consistency is the funda-
mental axiom underlying rational behavior and the neoclassical
construct of utility maximization!.

The study of consistency was formalized with the Generalized
Axiom of Revealed Preference (GARP)2. Despite the centrality of
rational behavior in neoclassical economics, since at least the
1950s studies have demonstrated that the choice behavior of
humans violate consistency when choice sets are manipulated or
framed3-%. Such results have given rise to a behavioral approach
to decision-making, in which agents are not strictly treated as
consistent or rational®. Explanations for such anomalies establish
that the human decision process is limited by, or maladapted to,
the particular choice context under the study. For example, agents
might simplify the choice process by using various heuristics®-8,
misunderstand the problem?, or in some cases, inconsistency
might arise due to a limited cognitive capacity!?.

However, more recently, lab experiments and real consump-
tion data suggest that a degree of choice inconsistency might be
present in human decision-making, even absent any particular
framing or context induced by the experimenter. Subjects are
often inconsistent and violate GARP!!-15 even when choosing
over simple bundles; for example, simply switching their choices
when presented with the same lotteries!®17. Therefore, a degree
of inconsistent behavior may be fundamental to the human
decision-making process. Indeed, economic theorists have pro-
posed that the valuations which underlie choice may themselves
be stochastic!®1°. By design, these theories place weak constraints
on the pattern of choice behavior because utilities are typically
assumed to be unobservable. Neuroscientific methods, on the
other hand, suggest a stronger test of this hypothesis??. Many
previous studies have identified several brain regions—primarily
the ventral striatum (vStr), the ventromedial prefrontal cortex
(vmPFC) and the posterior cingulate cortex (PCC)—that corre-
late with a utility function fit to choice behavior irrespective of the
reward type?!=23. Whether the value representations in these
areas obey consistency, and how this network might give rise to
inconsistent choice behavior, is unknown.

Similar to sensory perception and motor output, we propose
that a substantial component of inconsistent behavior is due to
variability in the neural computation of value. There is ample
evidence demonstrating that both the behavioral and neural
responses to the same sensory input are variable?4-26, The pre-
dominant explanation for this phenomenon is due to a funda-
mental property of the nervous system—the inherent variability in
neural activity?”28. We propose that the same variability is
responsible for inconsistency in choice behavior when the framing
or the choice context is stable. Our modeling approach is an
application of the Random Utility framework!8:20, a parsimonious
account of the aggregation of value signals and neural variability
in the course of a decision??-32. In our model, valuations of choice
options are inherently stochastic, and the skewed nature of neu-
ronal activity®3 implies that the severity of an inconsistent choice
results from larger fluctuations in the computation of value. This
prediction might seem surprising. After all, one might not expect
that a brain region which computes the valuations of choice
alternatives is more active when those valuations are contradicted
in an inconsistent choice. To asses this hypothesis, we measure the
severity of an inconsistent choice on a trial-by-trial basis, and
identify the neural correlates of inconsistent choices.

Measuring the severity of inconsistent choice presents a chal-
lenge for the analysis of the neural data. Existing methods for
measuring inconsistency either count the number of GARP vio-
lations or estimate the extent of (hypothetical) changes to the
dataset required to make choices consistent!41>-34-36; therefore,
they all assign one inconsistency score per subject. This aggre-
gation is severely limited because it yields only a simple between-
subject analysis based on the average neural activity over all
choices. By construction, it ignores the trial-by-trial variation in
both behavior and neural activity. Such variation provides
information not just about which subjects are more inconsistent,
but also the level of activity in different brain areas during an
inconsistent choice. To overcome this limitation, we develop a
trial-specific inconsistency index, which measures the severity of
inconsistency contributed by each choice. We apply our novel
index to a well-established choice task, and use it to explore the
neural computation underlying inconsistent choices on a trial-by-
trial basis.

A few neuroscientific studies have previously examined con-
sistency, albeit using only aggregate-level inconsistency indices.
Patients with lesions in the medial prefrontal cortex (mPFC)
violate GARP and transitivity more often than non-lesioned
controls, suggesting this region is necessary for consistent
behavior3”-38, GARP violations increase with aging and are
negatively correlated with gray-matter volumes in the ven-
trolateral prefrontal cortex3. Neural correlates of intransitive
lottery choices have been observed in BOLD signal from the vStr,
anterior cingulate cortex (ACC) and the dorsolateral prefrontal
cortex (dIPFC)#0. Although these studies have identified which
brain regions are involved in inconsistent choices across subjects,
no study has yet examined how such behavior might arise in
healthy human brains on a trial-by-trial basis.

Therefore, we examine, using fMRI, the neural basis of choice
inconsistency on each trial of a choice task. Importantly, in our
task, subjects make choices over lotteries holding the framing
fixed. Using our novel trial-specific inconsistency index, this
design allows us to assess the degree of a violation of incon-
sistency on each trial. We then search for correlates to this index
in the BOLD signal, with both a whole-brain analysis and a region
of interest (ROI) analysis of brain regions known to participate in
value-based choice: the vmPFC?1-23, the vStr?1:22, the PCC?241,
and the ACC*2, which is also related to choice difficulty, foraging,
control, and monitoring*344. We find that the BOLD signal from
these regions correlates with both inconsistency levels and utility.
These findings are consistent with our computational model
explaining how inconsistent choice behavior might arise in value-
related regions.

Results
A novel trial-specific inconsistency index. For a systematic
search for the neural computations that give rise to inconsistent
choices, we propose an index to measure the severity of incon-
sistency on a given trial. Our novel index is based on a Leave-
One-Out procedure (Fig. 1b) applied to the Money Metric Index
(MMI), first introduced by Halevy et al.4>. The MMI is a para-
metric measure of the extent of GARP violations in a dataset of
choices from linear budget sets. It measures the minimal
adjustments (in percentages) of the budget lines required to
reconcile the decision-maker’s choices with the best-fitting
parametric utility function (see the Methods section and Fig. 1a).
For each trial, our index (trial-specific MMI) calculates the
difference between the Aggregate MMI index (calculated over all
observations) and the MMI index calculated over all observations
less the given trial. Hence, our trial-specific MMI index
measures the severity of inconsistency per trial within a subject
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Fig. 1 A trial-specific inconsistency index. a Computation of the MMI. Let u(s) be some utility function and let x/ be the bundle chosen by the subject in the
trial i. A utility function induces a complete ranking on the bundles, i.e., if u(x) > u(y), then the bundle x is ranked above bundle y. Also, by the revealed
preference principle’2, when the subject chooses bundle x/, she reveals that she ranks this bundle over all other feasible bundles. These two rankings may
be incompatible as shown in the figure: u(s) ranks all the bundles in the purple bold interval as better than bundle x/, while the subject ranked x' as her most
desired bundle in the given budget set. The extent of this incompatibility is measured by computing the maximal expenditure for which the two rankings
agree (the minimal parallel inward adjustment of the budget line). Given the utility function u(e), we use average sum of squares to aggregate these

adjustments over all observations. For a set of utility functions U, we choose the utility function u(e) for which the aggregate adjustment is minimal. We
refer to the aggregate adjustment of this u(e) as the MMI for the entire dataset D given the set of utility functions . b Leave-One-Out procedure. Denote
the dataset by D. Denote the dataset that is generated by removing observation i from dataset D by D_;. For each observation i, the index is the difference
between the aggregate index MMI,, calculated for the entire dataset D and the aggregate index MMI,, ’calculated for the partial dataset D_;. Formally, the

index for observation i is MMI, — MMIj,

(see the Methods section). We then use it as a regressor to track
the neural correlates of choice inconsistency.

A key benefit of the Aggregate MMI index is that it also yields
parameter estimates of the subject’s utility function. These
subject-specific parameters may be used to estimate the subjective
value (SV) assigned to the chosen bundle in each trial. We
then use these SVs as another parametric regressor to identify
the neural correlates of value modulation. Since SV does not
depend on the specifics of the budget line (relative prices and
endowment), while the trial-specific MMI depends on both, there
is orthogonal information in the two regressors. Simultaneous
identification of the severity of inconsistency on each trial, and
the SV of that same trial, enables us to probe for the neural
correlates of inconsistent choice behavior.

Behavior. Subjects made choices from linear budgets in the
context of risk (following Choi et al.)!3 inside the fMRI scanner.
On each trial, subjects were presented with a set of 50/50 lotteries
between two accounts, X and Y, and were asked to choose their
preferred lottery (bundle). All possible lotteries in a given trial
were represented along a budget line. The price ratios (slopes of
the budget lines) and endowments were randomized across trials
and subjects (Fig. 2, see the Methods section).

In line with previous literature, none of the subjects’ choices
satisfied GARP. However, there was considerable evidence that the
subjects understood the task and did not behave randomly (Fig. 3a,
¢, Fig. 4a and Supplementary Note 2). Some predominant patterns
in behavior are depicted in Fig. 4a (see Supplementary Figure 7 for
scatterplots of all subjects). Figure 3b presents the recovered utility
parameters in the sample (see Supplementary Table 6 for the

individual recovered parameters). A comparison with the Choi
et al!3 study reveals that the distributions of the Afriat
inconsistency index (Methods and Supplementary Note 1)234 are
quite similar (Fig. 3c).

The parametric Aggregate MMI index is highly correlated with
existing aggregate nonparametric indices (Fig. 3d, Afriat index:
Spearman’s p = 0.538, p <0.001; Supplementary Figure 3a, the
number of GARP violations: p=0.703, p <0.001), suggesting
that, although parametric, the Aggregate MMI is a good measure
of inconsistency#>. Compared with nonparametric indices, there
was considerable variability in the trial-specific MMI, therefore it
can be used as a trial-by-trial regressor for neural activity
(Fig. 4b).

Neuroimaging. We identify brain areas that correlate with the
severity of inconsistency. A random-effect generalized linear
model on the BOLD signal revealed that trial-specific MMI was
positively correlated with activations in the mPFC and ACC (p <
0.0005, cluster-size corrected, Fig. 5a). This suggests that higher
activation in these brain areas is correlated with more severe
inconsistent choices on a given trial.

To verify that these areas also track value in our task (as
previously reported?!-23), we calculated the SV of the chosen
bundle on each trial for each subject. The SV regressor was
also positively correlated with activations in the mPFC and ACC
(p <0.0005, cluster-size corrected, Fig. 5b). A conjunction analysis
revealed that both inconsistency and value modulations were
correlated with activation in the mPFC and ACC (Fig. 5¢, d, 1456
overlapping voxels, 28.7% of the SV cluster). This substantial
overlap suggests that the neural computations that give rise to
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Fig. 2 Experimental task (following Choi et al.’3). a A Trial: Subjects were presented a visualization of a budget line with 50/50 lotteries between two
accounts, labeled X and Y. Each point on the budget line represents a different lottery between the X and Y accounts. Subjects used a trackball to choose
their preferred lottery (a bundle of the X and Y accounts) out of all possible lotteries along the line. For example, as depicted in Fig. 2a, the bundle (11,72)
corresponds to a lottery with a 50% chance to win 11 tokens (account X), and a 50% chance to win 72 tokens (account Y), where 1 token equals 5 NIS
(~$1.5). We varied and randomized the budget lines (slopes and endowments) across trials and subjects. At the end of the experiment, one trial was
randomly selected as well as one of the accounts. The subject received the tokens she had allocated to the selected account in the selected trial.

b Behavioral example: Given this budget line, the subject could choose A (10,35) with a 50% chance of winning 10 tokens (account X) and 50% chance of
winning 35 tokens (account Y); or similarly, B (45,10). An extremely risk-seeking subject would choose C, the lottery with the maximal expected payoff,
yielding a 50% chance of winning 60 tokens and a 50% chance of winning nothing. By contrast, an extremely risk-averse subject would choose D, the
intersection with the 45-degree line. This bundle is a degenerate lottery, which allocates the same number of tokens for both X and Y accounts. ¢ Timeline:
Inside the scanner, subjects had a maximum of 12 s time window to make their choice, followed by a 9 s variable ITI. If subjects made a choice before the
end of the 12's time window, the remaining time was added to the ITI. There were 27 trials in each block, 4 blocks, for a total of 108 trials. Subjects
completed a pre-scan questionnaire (see Supplementary Note 7 for an English version) and a practice block with a trackball outside the scanner to make

sure the instructions and procedures were clear

inconsistent choices, hence deviations from rational choice, are
related to the neural computations of value.

To increase the power of our analysis, we repeated our analysis
on specific ROIs. Based on existing literature, we examined the
vmPFC?1-23, vStr21:22, dJACC*2, and PCC?241, to test if choice
inconsistency is related to value-based circuits. We also examined
V1 as a control area. The ACC, vmPFC, and PCC were positively
correlated with trial-specific MMI (p(Bonferroni) < 0.05, in the
vmPFC and ACC, p <0.0005, cluster-size corrected in PCC) and
SV (p(Bonferroni) < 0.05, in the vmPFC and ACC, g(FDR) < 0.05
in the PCC), though we did not find any significant activation in
the vStr. As expected, V1 was not correlated with trial-specific
MMI (Fig. 5e), suggesting that only value-related regions are
involved with choice inconsistency. These results corroborate the
whole-brain analysis.

To verify that this group-level overlap reflects an overlap at the
single-subject level, we also searched for conjunct areas on a

subject-by-subject basis. In 24 of 33 subjects, there was a conjunct
region between trial-specific MMI and SV in one or more of the
ROIs: vmPFC, dACC, and PCC (Fig. 5f, Supplementary Table 5).
The hypothesis that the subject-specific mean effects (8 values)
for SV and trial-specific MMI were the same in the vmPFC and
dACC could not be rejected (Wilcoxon sign-rank test, p = 0.0504
and p=0.2877, respectively, multiple comparison corrected).
However, for the PCC RO], the difference was significant (p <
0.005). This suggests that the SV and trial-specific MMI
predictors both have an important effect on the BOLD signal in
the vmPFC and dACC (see Fig. 5g).

Motivation for using trial-specific MMI. To demonstrate the
power and necessity of our trial-specific analysis, we also assessed
whether a standard between-subject analysis using aggregate
indices could identify the same brain areas found in our trial-by-
trial analysis. We did not find significant correlations between any
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Fig. 3 Behavioral results. a Actual subjects vs. random subjects: In our sample, the median number of GARP violations was 59 (std =506.24, min =1,
lower quartile =11, upper quartile =166, max = 2873), the median Afriat index was 0.0362 (std = 0.058, min = 0.0007, lower quartile = 0.0258, upper
quartile = 0.1011, max = 0.2197), and median Aggregate MMI score was 0.037 (std = 0.0242, min = 0.0065, lower quartile = 0.0297, upper quartile =
0.0481, max = 0.143). Both the aggregate MMI and Afriat index range between O (fully consistent) and 1. For comparison, 25,000 simulations of random
decision-makers yielded median number of GARP violations of 4,568.5 (std 397.6, min = 2216, lower quartile = 4294, upper quartile = 4794, max =
5565), a median Afriat Index of 0.5229 (min = 0.182, lower quartile = 0.4545 upper quartile = 0.5905, max = 0.872) and a median Aggregate MMI of
0.2186 (min = 0.1332, lower quartile = 0.2047, upper quartile = 0.2326, max = 0.299). These high scores indicate that our subjects did not choose
randomly along the budget lines. b Recovered parameters using the MMI with the Disappointment Aversion (DA) utility function with Constant Relative
Risk Aversion (CRRA) functional form®® (see Methods). The # and p parameter estimates for each subject are plotted. When < 0 (“elation seeking”, four
subjects, gray area), the subject overweights the higher prize. When < 0 (“disappointment aversion”, 29 subjects, purple area), the subject overweights
the lower prize. Higher p values represent higher risk aversion levels. When <0, it is the case of the common Expected Utility (if, in addition, p =0, it is
the special case of Expected Value). ¢ Comparison with lab experiments: Distributions of Afriat index of our subjects compared with Choi et al.!3. d Validity
of MMI. Correlation of Afriat index with Aggregate MMI (p = 0.538, p<0.001, n=33)

of the aggregate indices (aggregate MMI, Afriat index, and
number of GARP violations) and the average change in the
BOLD signal in any of the predefined ROIs (Supplementary
Table 3).

In addition, we also examined whether similar activations
could be found using a nonparametric trial-specific inconsistency
index. The same Leave-One-Out procedure was implemented
on the number of GARP violations, with no functional
form assumptions (henceforth trial-specific violations). At the
behavioral level, we found a significant correlation with our

parametric trial-specific MMI index, (8= 0.0009, p <0.0001,
cluster regression). However, the RFX-GLM analysis using the
nonparametric trial-specific violations index as a regressor did
not yield any significant voxels (even with a more liberal
threshold, Supplementary Figure 5b). This is likely due to the
low variability of the trial-specific violations regressor (73.4% of
the data points equal to 0, Supplementary Figure 5a). The Afriat
index also yielded a null result (Supplementary Figure 5c). These
null results provide additional motivation for using a parametric
index with high variability across trials and subjects.
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Fig. 4 Representative subjects. a Scatterplots of prominent behaviors: The y-axis represents the share of tokens allocated to the Y account as a function of the
log price ratio, log(py/ ,) (x-axis). As the log price ratio increases, account Y becomes relatively cheaper. Subject 410 equalized expenditures between the two
accounts, as she divided tokens proportionally to the price ratio (Cobb-Douglas preferences). Subject 104 exhibited similar behavior, but chose to allocate the
entire endowment to the cheaper account in extreme slopes. Subject 403 chose the safe bundle, when the prices of X and Y were relatively similar and
allocated most or all her tokens to the cheaper account when the price ratio between the accounts was relatively high (steeper slopes). Even a highly
inconsistent subject, like subject 203, was sensitive to changes in prices, with the share of tokens to the Y-account declining as its price rises. b Variability of
trial-specific MMI: Distributions of the trial-specific MMI for the four representative subjects from panel a showcase the heterogeneity of trial-specific MMI
scores across and within subjects. For example, subject 203 was highly inconsistent throughout most of her trials, while subject 403 was mostly consistent

A model of valuation and inconsistent choices. We now pro-
pose a model in which neural variability can generate choice
inconsistencies compatible with our empirical findings, including
the observation that the BOLD activity correlates positively with
both SV and inconsistent choice behavior.

Consider a decision-maker choosing between two alternatives
{1, 2} with a valuation for each alternative given by v; > v,. Define
the first alternative—with the larger valuation—as the consistent
choice (i.e., it obeys an ordered utility function u(-), Supplemen-
tary Note 1). During a choice, the neural computations which
encode and compare valuations are subject to variability. This is
represented by a random utility comprised of the valuation v; plus
a random term e;.

(1)

The alternative with the largest random utility is chosen, therefore
the decision-maker might choose inconsistently due to the
random component (i.e, v,>V,, Fig. 6a). The probability of
inconsistent choice is determined by two factors:

Vi =Vt ¢

1. The distribution of v;.

A skewed distribution of neural activity is observed in
various contexts.33 Therefore, we assume a skewed distribu-
tion for ¥;, and use the log normal and generalized extreme
value distributions as examples.

The difference between v; and v,.

As the gap between valuations increases, the realization of

the random component for the inconsistent alternative must

be relatively larger for it to be chosen.

The implications of this model for the neural data are the
following: if the BOLD signal correlates with random utility, this
signal will be higher when choices are more inconsistent, because

6

the random component must make up the gap between the
higher and lower valuation when the inconsistent option is
chosen (Fig. 6a). Because the error distribution is skewed, it is
larger on average when the gap in valuations is overcome
(Fig. 6b), and particularly so when the gap between the consistent
and inconsistent options is larger (Fig. 6¢). Therefore, the model
predicts that valuation regions of the brain will be more active on
inconsistent choices.

The proposed relation between the BOLD signal and choice
inconsistency also holds as the number of alternatives increases
beyond our binary choice example. Define the choice of
alternatives with lower valuations as more inconsistent. When a
low value alternative is added to a choice set, its corresponding
random component must be larger to overcome the utilities of all
higher-valued alternatives. Moreover, the largest realization of an
error is required for the lowest value option to be chosen, so on
average the largest BOLD signal will arise on a trial in which the
lowest valuation alternative is chosen. As the number of low value
alternatives increases, this will yield a corresponding increase in
the BOLD signal on more inconsistent trials (Fig. 7). This is true
whether the BOLD signal correlates with the random utility of the
chosen option or the aggregate random utility of all options
(Supplementary Figure 8b). Moreover, it is robust over a range of
error distributions which have the skewed property consistent
with neural activity (Supplementary Figure 8a).

To demonstrate that the random fluctuations in value implied
by NRUM are closely related to the observed neural activity, we
assessed whether the same correlation pattern between the
random utilities and inconsistency index could be observed.
Based on the behavior of our subjects, we therefore simulated the
valuation process implied by the NRUM and examined the
correlation between the random utility valuations (equivalent to
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Fig. 5 Neuroimaging results. a-d Whole brain: Results of RFX GLM, n =33, p < 0.00005, cluster-size correction, x = 0 (MNI coordinates). Model regression:
BOLD = B, + BiRT + oMMl gpecitic + B3SV + B, priceratio + Bsendowment. Six additional motion-correction regressors were included as regressors of
no interest. a Neural correlates of the trial-specific MMI. b Neural correlates of the SV: We present results for the frontal lobe. Other activations are
detailed in Supplementary Table 4. ¢ Conjunction analysis. d Overlay. e ROI: The ROI analysis revealed that choice inconsistency was correlated with
activation in the dACC, vmPFC (p(Bonferroni) < 0.05) and PCC (p < 0.0005, cluster-size correction), but neither with vStr nor with V1. RFX GLM, n =33,
regression model as in a-d. For illustration purposes, we set the threshold to p < 0.001 (more stringent than an FDR correction). f Subject level: Subject-
level analysis representing overlap of the SV and trial-specific MMI in the vmPFC, dACC, and PCC ROls. For each subject, we conducted a conjunction
analysis on the brain areas that significantly tracked trial-specific MMI and SV. Most subjects had an overlap region in the vmPFC (21 of 33), dACC (18 of
33), and PCC (21 of 33). FFX GLM, regression model as in a-d. We set a liberal threshold of p < 0.15 due to lack of statistical power. For three subjects, the
threshold was set to p < 0.2, MNI coordinates (see Supplementary Table 5 as well). g Comparison of subject-level mean effects (% signal change, f values)
of trial-specific MMI and SV in the vmPFC, dACC and PCC, using two-sided Wilcoxon sign-rank test (n.s. not significant, **p < 0.01). In all panels a-f,
results are shown on the Colin 152-MNI brain

the BOLD signal) and the inconsistency of their simulated
choices. For all subjects, we found significant positive correlation
(Table 1 and Supplementary Figure 12), implying that NRUM is
consistent with our main empirical finding.

Dissociation of the SV and trial-specific MMI regressors. As
previously noted, there is orthogonal information in the SV and the
trial-specific MMI, since the SV does not depend on the
budget set. Indeed, these regressors are weakly negatively correlated
(8= —0.00133, p <0.001, clustered regression by subjects), even if

we control for the expenditure and slope of the budget line. Also, as
expected, less than 5% of the variance of the trial-specific MMI is
explained by the SV regressor (R?=0.0496, see subject-level
correlations in Supplementary Table 7). By contrast, there is sig-
nificant positive correlation between the SV and the BOLD signal,
and between the trial-specific MMI and BOLD, when these
regressors are included both separately and jointly in the GLM.
Therefore, SV and trial-specific MMI appear to be dissociated in
our analysis. An orthogonality analysis confirms these results
(Supplementary Note 5, Supplementary Figure 11a and b).
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Fig. 6 The neural random utility model with two alternatives. a Inconsistent binary choice: A draw (red) of utilities from a log normal distribution with mean
vi=4and v, =2, (log s.d. = 0.7). In this draw, v, >V;, so the inconsistent option (with lower mean valuation) is chosen. b Average random utility: A sample
of 2,000,000 utilities from the distribution in a. The average utility is higher when the inconsistent option is chosen. ¢ Larger difference: A sample of
utilities from distributions with a larger difference in mean valuations (log normal, means v; =7 and v, =2, (log s.d. = 0.7). The average utility of an
inconsistent choice is larger when the choice is more inconsistent (the difference in mean valuations is larger compared to b)
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Fig. 7 The neural random utility model with six alternatives. The alternatives are ranked in value (v; =7,...,v¢ = 2) with the highest valued alternative
termed the consistent choice. For inconsistent choices, the average utility of the chosen option increases as worse alternatives are chosen. This is because
the random term, e; had to be much larger (e.g., compare Chose 6 vs. Chose 2). Error bars indicate standard errors

Table 1 Simulation results

SID Gumbel Log normal SID Gumbel Log normal

dist. dist. dist. dist.
103 0.1245* 0.1484* 412 0.1084* 0.1105*
104 0.1345* 0.1568* 413 0.12071* 0.1089*
202 0.1048* 0.13471* 414 0.1273* 0.1662*
203 0.1233* 0.1261* 415 0.1227* 0.175*
204 0.1290* 0.1581* 416 0.0543~* 0.0455*
205 0.1266* 0.1288* 417 0.1084* 0.1391*
206 0.1345* 0.1369* 418 0.1312* 0.1500*
401 0.1244* 0.1343* 419 0.0934* 0.0916*
402 0.1002* 0.0914* 420 0.1120* 0.1339*
403 0.0963* 0.1139* 421 0.1303* 0.1301*
404  0.0607* 0.0706* 422 0.0779* 0.0701*
405 0.1148* 0.1143* 424 0.1053* 0.0889*
406 0.1196* 0.1187* 426 0.1240* 0.1259*
407 0.1289* 0.1620* 427 0.1200* 0.1133*
408 0.1208* 0.1298* 428 0.1281* 0.1746*
409 0.1227* 0.1484* 430 0.1365* 0.1563*
410 0.1206* 0.1207*

The correlation coefficients r for the pooled simulated series per subject using two skewed
distributions for the random fluctuations in value, the Gumbel and log normal (*p <10~10).

Finally, a psychophysical interaction (PPI) analysis between
our predefined ROIs (vimPFC, dACC, and PCC) and other brain
regions revealed that the activity in the seed regions and other
brain areas interacted with the SV and trial-specific MMI
regressors (Methods and Supplementary Figure 11c). As might
be expected, all three seed regions were interacting with motor
and visual regions, for reasons likely related to task execution. In
addition, we found interaction with other value-related regions,
such as the Insula and dIPFC?342. Importantly, though, only
under the SV context did we find interactions between the seed
regions—specifically, the PCC and vmPFC interact with the
dACC. This may indicate that choice inconsistency, represented
by trial-specific MMI, results from a spontaneous or random
process, not coordinated across the different nodes of the “value
network”.

Controlling for other sources of choice inconsistency. It is
possible that inconsistency arises due to other sources of noise—
like imprecision in motor execution or the numerical repre-
sentation of the choice options. To control for these alternative
explanations, we conducted additional analyses using two func-
tional localizers that were collected at the end of the main
experiment.
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First, in a motor imprecision localizer task, subjects were
asked to reach a predefined location marked as a circle on
the line (Supplementary Figure la). Motor imprecision was
measured by the average Euclidean distance between the
predefined target and the actual location the subject chose.
Across subjects, the average motor noise and the Aggregate
MMI were not significantly correlated (r=0.144, p=0.511,
Supplementary Figure 1c). In addition, as might be expected,
frontal lobe activity in premotor and motor areas (peak voxel at
[17, 25, 42], MNI coordinates), positively correlated with the
imprecision regressor (Supplementary Figure 1d). However, no
voxels conjointly represented both motor imprecision and
inconsistency level (i.e., trial-specific MMI).

In a second, numerical imprecision localizer task (Supplemen-
tary Figure 1b), we estimated the numerical execution of each
subject in reaching a predefined {X,Y} coordinate on the line.
Numerical imprecision was measured by the average Euclidean
distance between the coordinates and the actual location subjects
chose. The average numerical execution imprecision per subject
was not correlated with the Aggregate MMI (r = 0.105, p = 0.61,
Supplementary Figure 1f). We also did not find any neural
correlates with the imprecision of numerical execution (Supple-
mentary Figure 1g). These analyses suggest that the neural
activations of inconsistency are not due to imprecisions in motor
or numerical execution, and are mainly observed in value-related
brain areas (Supplementary Figure le).

Controlling for choice difficulty. In binary choice tasks, choice
difficulty is usually considered to be the difference in the SVs
between the two options (ASV)—the smaller ASV, the more
similar the options are, and the higher the difficulty level#446-48,
Similar intuition holds for continuous choice sets, though a
measure of difficulty must account for both the subject’s pre-
ferences and the larger number of choices. To address the role of
choice difficulty in our dataset, and its possible relationship to
choice inconsistency, we propose an index of choice difficulty in
continuous choice sets and include it as a control in our main
GLM (see the Methods section for details).

In our Choice Simplicity index, the closer its value is to 0, the
more difficult is the choice. As expected, difficult choices lead to
longer RTs (f=—2.782, p<0.0001, clustered regression by
subjects). Trial-specific MMI is negatively correlated with our
Choice Simplicity index (= —0.0302, p < 0.0001), meaning, the
more difficult is the choice problem, the higher is the
corresponding inconsistency level. However, the index also
explains little of the variance in trial-specific MMI scores (R? =
0.0137), therefore, the relationship between choice difficulty and
inconsistency is weak.

It is important to note that the random utility model that we
propose predicts these findings. As noted in our modeling, choice
difficulty is a key determinant of the probability of inconsistent
choice; we would expect that choices are more inconsistent on
more difficult problems. However, if there was no variability in
valuation, then even the most difficult choice would not lead to
inconsistencies (i.e., choice difficulty alone cannot lead to choice
inconsistency). It is precisely the variability that “connects” choice
difficulty to inconsistency, with the obvious implication that more
difficult problems are more likely to produce inconsistency.
Therefore, a weak negative correlation between the Choice
Simplicity index and the level of inconsistency is expected.

In the RFX GLM analysis, our main findings for trial-specific
MMI and SV clusters hold when controlling for difficulty
(Supplementary Figure 9a-f). Moreover, the Choice Simplicity
index was correlated with ACC activation (among other brain
regions, but not the vmPFC and PCC), as extensively suggested

by the literature*44° (p <0.0005, cluster-size corrected, Supple-
mentary Figure 9g).

Controlling for the role of confidence in decision-making.
Another possible source for choice inconsistency is low levels of
confidence in one’s own choice. Following Lebreton et al.>0, we
modeled levels of confidence as the second-order polynomial of
SV. Similarly to Lebreton et al.>0, we find a quadric relationship
between RT and confidence levels, when controlling for the first-
order polynomial of SV (8= —0.00155, p<0.005), indicating
subjects had the longest RTs in intermediate confidence-level
choices.

As expected from the dissociation analysis above, we found
that trial-specific MMI was correlated with our measure for
confidence (= —0.000027, p <0.0001 in a clustered regression
by subjects). Such result indicates that low levels of confidence
correlate with high inconsistency scores; however, the R? of the
model is very low (0.0395). When we added the confidence
predictor to the RFX GLM, our main results hold, suggesting that
the BOLD activity in mPFC and ACC was larger on inconsistent
trials, even after controlling for confidence (Supplementary
Figure 10).

Robustness of the trial-specific MMI. We ensured our results
remained robust even after controlling for changes in heuristics
over the blocks of the experiment (Supplementary Note 3, Sup-
plementary Figure 4 and Supplementary Tables 1 and 2). The
results remain unchanged also when we control for mis-
specification of the utility function, by using a different functional
form (Methods, Supplementary Note 4 and Supplementary
Figure 6).

Discussion

In this study, we explored the neural computations that give rise to
inconsistent choice behavior when the framing and context of the
choice problems are stable. We introduced a novel trial-specific
inconsistency index and found that it was positively related to
activations in the vmPFC, dACC, and PCC which, strikingly, lie in
the same regions of cortex as value representations. Moreover, the
functional connectivity networks of the SV are more inter-
connected than for inconsistency, suggesting that inconsistent
choices might be driven by idiosyncratic fluctuations within these
regions. The main results were corroborated with an ROI analysis
on anatomically defined brain regions, and were robust to several
alternative explanations including the influence of motor or
numerical noise. We also proposed a novel index for measuring
choice difficulty on a continuous budget line, and demonstrated
our main result is robust to difficulty. Finally, including a proxy
for confidence®® does not alter our main findings.

Our main empirical finding is a positive correlation between
the severity of choice inconsistency and the BOLD signal located
primarily in value-related areas. Based on our behavioral and
neural data, we proposed a computational model in which
inconsistent choice behavior originates from the variability in
neuronal value computation. In cases where neural variability is
large enough to overcome the value difference between the
alternatives, choices of low valuation alternatives may occur. If
the error distribution is skewed, we should expect to see higher
neural activation in value regions for more inconsistent choices.
Therefore, this study provides evidence consistent with the view
that choice inconsistency arises from variability in regions of the
human brain that are known to be responsible for value
computation.

The hypothesis that choice inconsistency is tied to variability in
valuation is not novell8, However, the standard explanation in
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economics is that this variability arises from limitations in the
data available to the researcher, not that choice itself is stochas-
tic’l. More recently, decision theorists have proposed that the
source of choice inconsistency might be more fundamental; that
is, choice is stochastic because utilities are stochastic!$195253,
While such theories place important empirical constraints on the
pattern of inconsistent behavior, these constraints are weak
because utilities are assumed to be unobservable. By contrast, the
ability to observe the neural valuations of choice alternatives on a
given trial enables a much stricter test of the hypothesis that
choice inconsistency is due to stochastic valuations??. Therefore,
we should expect to see the empirical results reported here if
inconsistent choice behavior arises from stochastic valuations
computed in value regions of the brain.

The main methodological contribution of this study is the trial-
level index of inconsistency. Existing inconsistency indices are
aggregate measures, which use an entire subject’s dataset to
provide one inconsistency score. For this reason, aggregate
measures which correlate BOLD signal across subjects lose sta-
tistical power; they ignore trial-by-trial variations in behavior—
and its neural foundations—thus cannot take advantage of the
rich trial-level measurements provided by the MRI scanner. In
particular, the most informative trials that induced inconsistent
choices are lost when averaging over all trials. By contrast, our
proposed index tracks trial-by-trial variations in behavior and
neural activations, therefore provides insight into the valuation
and choice process when a subject chooses inconsistently. We
should note its use need not be limited to neuroeconomic studies;
standard behavioral laboratory experiments can use the trial-
specific MMI index to test theories which imply varying behavior
across trials (e.g., choice dynamics).

At first glance, our empirical results might seem surprising
given both lesion and stimulation studies which demonstrate that
activity in value-related regions is necessary for consistent
choice?7->4. Moreover, Polania et al.>* find that choice behavior
becomes less accurate when frontal-parietal coupling is disrupted
by tACS. However, the results from these studies are compatible
with our proposed computational model for choice behavior.
When value-related regions are absent or disrupted, choices are
highly inconsistent because of the limited ability of the brain to
compute the valuations necessary for consistent choice behavior.
When these regions are intact, value signals can be computed, but
with a degree of variability inherent to neural computation. Thus,
choices are largely consistent, but exhibit a pattern in which
inconsistent choices correlate with an increase in aggregate
activity. As further evidence, lesioned subjects in Camille et al.3”
had an Afriat Index of 0.1 on average, compared with an average
of 0.0623 in our sample, even though our subjects were facing a
much more difficult task (11 trials vs. 108 trials).

The neural random utility model represents a parsimonious
account of the variability in value signals during a decision20-2%,
As such, the trial-by-trial variability we propose can arise from
multiple sources, including higher order cognitive processes such
as fluctuations in attention or heuristics or lower-level process
like neuronal noise. At a computational level, a number of pre-
vious studies have explored the role of noisy computations in
choice behavior, typically in the form of a bounded accumulation
model, in which a noisy decision signal accumulates to some
threshold (the drift-diffusion model, DDM)3°. These models have
found support in both single-neuron recordings®® and human
imaging studies®, with the fMRI studies in particular observing
value signals in the vmPFC. Since the NRUM is a general for-
mulation of bounded accumulation models??, this large set of
accumulation models can provide a computational account of the
results we observe. Of primary importance, the distributions used
in our examples (either Log normal or Gumbel distributions!8)

are skewed with a long right tail, a property consistent with neural
data at both the level of single-neuron firing rates and aggregate
network-level measures3. Therefore, our results are compatible
with the evidence for a skewed distribution of neural activity in
value-related regions. To demonstrate that the valuations implied
by the NRUM are closely related to the observed neural activity,
we simulated the valuation process of our subjects based on their
observed behavior and demonstrated a correlation between their
random utilities (equivalent to the BOLD signal) and the
inconsistency of their simulated choices (equivalent to the trial-
specific MMI index).

What might be the source of this variability in value compu-
tation, and why should it persist in decision-making? Variability
is inherent to neural computation®®, arising from thermodynamic
noise at the cellular and synaptic level, and is present at all
stages from primary sensory systems to motor execution®®>7.
Network computations can filter, or integrate, this noise, but the
maximal signal-noise ratio is bounded due to physiological
constraints®®>%, Thus, some constrained optimal degree of noise
persists at the network level across domains from perceptual? to
value-based choice?$3132. In a seminal article, Fox et al.®® find
that “inconsistency in perception or performance should not be
automatically attributed to fluctuations in task-related cognitive
processes such as attention, but could also be due to ongoing
fluctuations in intrinsic neuronal activity”. Indeed, a recent study
conducted to explicitly separate the sources of behavioral varia-
bility finds that 89% of deviations from optimal choice can be
attributed to errors in value inference, rather than sensory pro-
cessing or action selection®!. This is consistent with our finding of
a limited role for noise in motor output or numerical repre-
sentation in generating inconsistent choices. Instead, the devia-
tions from consistency were observed in valuation regions,
suggesting that the value of choice options might be fluctuating
on a trial-by-trial basis. This result is in line with non-human
studies: In primates, variability in the firing rate of orbitofrontal
cortex neurons predicted choices of near indifferent alter-
natives®?, while stability in neural populations in the medial
frontal cortex accounted for variability in choice in rats.%3 Fur-
thermore, neural variability can be influenced by varying levels of
attention®-0. These results point to a speed-accuracy tradeoff in
decision-making governed by metabolic costs®”.

Taken together, these results question whether the form of
inconsistency we observe should be considered sub-optimal. Our
results are consistent with a degree of constrained-optimal
variability around the normatively defined benchmark of a uti-
lity representation. In fact, our results may be interpreted as
implying that inconsistent choice behavior is an integral feature
of human decision-making.

Methods

Participants. Thirty-eight subjects participated in the study (17 females, mean age
25.3, 18-36). Subjects gave informed written consent before participating in the
study, which was approved by the local ethics committee at Tel Aviv University
and by the Helsinki Committee of Sheba Medical Center. Three subjects were
dropped due to sharp head movements (>3 mm). Another subject opted out from
the experiment before completing the scan, and another subject was dropped due
to anatomical abnormalities. We therefore report the data for the remaining

33 subjects.

Experimental task. We used a modification of the task presented by Choi et al.13.
On each trial, subjects faced a visualization of a budget line (Fig. 2a). Each discrete
(x, y) point on the budget line corresponds to a lottery with a 50% chance of
winning the tokens allocated to account X (the x-axis coordinate) and a 50%
chance of winning the tokens allocated to account Y (the y-axis coordinate). Thus,
the budget line describes the possible allocations to accounts X and Y on a two-
dimensional graph. On each trial, the subject was asked to choose the desired
bundle (of X and Y tokens) from the budget line, knowing that only one of the
accounts will be realized. At the end of the experiment, one of the trials was
randomly selected for monetary payment (to satisfy incentive compatibility).
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The subject won the monetary value of the tokens allocated to the winning account
on the trial drawn for the payment. Each token was worth 5 NIS ($1 3.5 NIS).

In this task, the slope of the budget line determines the price of one unit of
account X relative to one unit of account Y. We varied and randomized the budget
lines (slopes and endowments) across trials and subjects. The x-axis and y-axis
were scaled from 0 to 100 tokens, and the resolution of the budget line was 0.1
tokens. Subjects could not choose inside the budget line. In trials where subjects did
not make any choice in the allotted time, a text reading “No choice was made”
appeared on the screen. These trials were excluded from the analysis (35 trials out
of 3,564 total trials). The average prize was 191.6 NIS + 100 NIS show up fee.

fMRI session. Subjects performed the experimental task using an fMRI compatible
trackball to choose their preferred bundle. On each trial, subjects had a maximum
of 12 s to make their choices, followed by a 9 s variable inter-trial-interval (jittered
between trials). If subjects made their choice before the end of the maximal 12s,
the remaining time was added to the ITL There were 27 trials in each block, and
each subject completed four blocks, for a total of 108 trials.

After completing the main task, we obtained an anatomical scan and two
functional localizers, one numerical and one motor (counter-balanced), aimed to
control for alternative sources of choice inconsistency (see Functional Localizers
below).

Instructions and pre-scan practice. Before the scan, subjects read an instruction
sheet and completed a pre-scan questionnaire to verify the task is clear. The
instructions included many examples and were written in simple terms to avoid
confusion. In the pre-scan questionnaire, subjects were given several decision
problems (i.e., graphs representing different budget sets) and were asked to identify
intersections with the axes, identify the cheaper account, and calculate the possible
winning prize (in terms of both tokens and NIS) for a specific (x, y) coordinate.
After the pre-scan questionnaire, the experimenter went over their answers. In case
the subject made a mistake, the experimenter explained the instructions orally, and
then repeated the question in the questionnaire until the subject answered cor-
rectly. See an English translation of the instructions and pre-scan questionnaire
in Supplementary Notes 6 and 7. Thereafter, subjects completed a practice block in
front of a computer, using a similar trackball to the one used inside the fMRI, in
order to imitate the motor movements required during the scan. The budget sets in
the practice block were predefined to ensure all subjects encountered the same
(substantial) variation of slopes and endowments.

Image acquisition. Scanning was performed at the Strauss Neuroimaging Center
at Tel Aviv University, using a 3 T Siemens Prisma scanner with a 64-channel
Siemens head coil. To measure blood oxygen level-dependent (BOLD) changes in
brain activity during the experimental task, a T2*-weighted functional multi-band
EPI pulse sequence was used (TR =1.5s; TE = 30 ms; flip angle = 70° matrix =
86 x 86; field of view (FOV) = 215 mm; slice thickness = 2.5 mm; band factor = 2).
Fifty-two slices with no inter-slice gap were acquired in ascending interleaved
order, and aligned 30° to the AC-PC plane to reduce signal dropout in the orbi-
tofrontal area. Anatomical images were acquired using 1-mm isotropic MPRAGE
scan, which was comprised from 208 axial slices without gaps at an orientation of
—30° to the AC-PC plane.

fMRI data preprocessing. BrainVoyager QX (Brain Innovation) was used for
image analysis, with additional analyses performed in MATLAB (MathWorks).
Functional images were sinc-interpolated in time to adjust for staggered slice
acquisition, corrected for any head movement by realigning all volumes to the first
volume of the scanning session using six-parameter rigid body transformations.
Spatial smoothing with a 6-mm FWHM Gaussian kernel was applied to the fMRI
images. Images were then co-registered with each subject’s high-resolution ana-
tomical scan and normalized using the Montreal Neurological Institute (MNI)
template. All spatial transformations of the functional data used trilinear
interpolation.

The General Axiom of Revealed Preference (GARP). Consider a finite dataset
D = {(p',x")}\_,, where x' € R¥ is the subject’s chosen bundle at prices p’ € R
(k is the number of goods in the bundle). Bundle x is

1. Directly revealed preferred to another bundle x, denoted x'R%, if pixi > pix.

2. Strictly directly revealed preferred to bundle x, denoted x'P'x, if p'x’ > p'x.

3. Revealed preferred to bundle x, denoted xRx, if there exists a sequence of
observed bundles (¥, xk,..., x™), that are directly revealed preferred to one
another, x'R0%/, ¥R0x,..., x"R%x. Relation R is therefore the transitive closure
of the directly revealed preferred relation.

D satisfies the General Axiom of Revealed Preference (GARP), if every pair of
observed bundles, x'Rx/, implies ~(x/P'x’). We say a subject is consistent iff she
satisfies GARP. We say that a utility function u(x) rationalizes D if x'R0x implies u
(x%) > u(x). According to the Afriat theorem!2, there exists a well-behaved utility
function (continuous, monotone, and concave) that rationalizes the data iff the
subject satisfies GARP (Supplementary Figure 2b). Otherwise, a strict cycle of

choices exists and we say that D violates GARP. By the Afriat’s theorem, if the
dataset D does not satisfy GARP, then the subject cannot be described as a non-
satiated utility maximizer and is therefore said to be inconsistent!2.

Aggregate inconsistency indices. As subjects often violate GARP, and therefore
are inconsistent! 1445, one would like to measure their level of inconsistency. The
simplest way would be to count the number of GARP violations. Other well-known
nonparametric inconsistency indices are Afriat index?>34, Varian index?® and
Houtman-Maks index3® (see Supplementary Note 1 for detailed descriptions of
these indices). For each subject, we calculated the number of GARP violations and
Afriat index for the entire experiment (108 trials). We were unable to compute
Varian index and Houtman-Maks index at the aggregate level as they are hard
computationally?> (see Appendix B in Halevy et al.*%). In the current study, we also
compute a parametric index for inconsistency—the Aggregate MMI.

Aggregate MMI. Following Halevy et al.#> consider the continuous and non-
satiated utility function u(-) as representing the preferences of the subject. u(-)
induces a complete ranking on the bundles such that if u(x) > u(y), then bundle x is
preferred to bundle y. In addition, each actual choice induces a partial order on the
bundles since when a subject chooses bundle x/, she, by the principle of revealed
preference, ranks this bundle over all other feasible bundles. If these two rankings
are compatible for every choice made by the subject, u(-) rationalizes D. Otherwise,
if these two rankings are incompatible for some choice according to u(-), some
feasible bundles are ranked higher by u(-) than the chosen Bundle x'. For every
observation, the incompatibility between the two rankings can be measured by the
minimal expenditure (parallel inward movement of the budget line), such that the
adjusted budget set does not include any bundle that is strictly preferred over x‘
according to u(-). Halevy et al.4> show that this measure is exactly the well-known
money metric%®. Formally, given the prices p’, the money metric m(xip’,u) for
observation i is the minimal expenditure required for the dataset to include a
bundle y such that u(y) > u(x):
x',p',u) = min p'

m, P = min Y @)
We normalize the money metric measure by the original expenditure, and there-
fore the adjustment for trial i is v; (D, u) =1 — % (Fig. 1a). Hence, if no
adjustment is needed, v; (D, u) = 0. Next, we aggregate the adjustments for all
observations using some aggregator function f(v*(D, u)) (specifically, the average
sum of squares), and get a measure of the incompatibility between the utility
function u(-) and the dataset D, given the aggregator f. Finally, we iterate over all
utility functions in the set of utility functions ¢/ under investigation and look for
the one with the smallest incompatibility with the dataset D. The MMI, denoted
I,(D,f,U), interprets the incompatibility between this utility function and D, as
the incompatibility between the set of utility functions &/ and D given the aggre-

gator f.

(D f,10) = inf £(+* (D, ) 3)
Halevy et al.#> prove that had we examined the set of all continuous non-satiated

utility functions (denoted &), the MMI would be equal to the nonparametric
Varian inconsistency index, denoted I(D, f)3>. As it is not feasible to examine all
utility functions in this set, they propose restricting to a specific functional form.
The MMI thus includes a misspecification element. Fortunately, the MMI is
separable additive in Varian inconsistency index and the misspecification:

I,(D,f,U) = I,(D,f) + Misspecification (4)

The computation of MMI yields two measures: (a) the computation of aggregate
MMI (b) elicitation of subject-specific utility function parameters. The subject-
specific utility function is the function for which aggregate MMI is minimal, and
hence constitutes the best fit for the subject’s choices among the investigated family
of utility functions U.

Trial-specific index. A Leave-One-Out procedure. Let ¢, be an aggregate incon-
sistency index of dataset D. Let D_; be a subset of D that includes all n—1 trials but
the ith observation. Let e,_; be the aggregate inconsistency index of D_;, and let

(sD —&p ) be the trial-specific inconsistency index of trial i.

The best practice would be to use Varian index as &p, as it is the nonparametric
index with the highest number of degrees of freedom. However, it is not possible to
compute Varian index for datasets with 108 observations in feasible time.
Therefore, we had to choose between two other alternatives. The first was to use
computational-convenient nonparametric indices (Afriat index and GARP

violations). Nevertheless, when using those nonparametric indices, the trial-specific
index (sD — eDﬂ) usually equals 0 and therefore lacks the required variability

across trials. The distribution of a nonparametric trial-specific index is depicted in
Supplementary Figure 5a. One should notice that the variability in the trial-specific
index is important when using the General Linear Model (GLM) to correlate the
BOLD signal, as otherwise it lacks statistical power. Therefore, we picked aggregate

MMI as ¢p, and refer to (51) - £D7(> as trial-specific MMI. The code-package used
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to compute aggregate MMI and trial-specific MMI is available as open source in
https://github.com/persitzd/RP-Toolkit.

Parametric utility. For parametric family of utility functions, we use the Dis-
appointment Aversion model with CRRA functional form®?, as it includes many
well-known types of preferences in the context of risk!3*> (see also Appendix D of
Halevy et al.#%). Formally,

SV(xil,xiz) = yw(max{xil,xiz}) +(1- y)w(min{xil,xiz}), (DA) (5)

y:ﬁ,71§ﬁ<oo (6)
_ =0
w(z) = {ln(;),p: 1(CRRA) 7)

where y is the weight of the better outcome, and w is a CRRA utility index with a
relative risk aversion parameter p. When f3 =0, this is the common Expected
Utility function with parameter p (if, in addition p =0, it is Expected Value and
when p=1 it is the Cobb-Douglas with equal exponents). When 3> 0 the indi-
vidual over-weights the probability that the lottery will yield the lower prize
(“disappointment aversion”). When f3 > oo, the subject cares only about the element
with the lower quantity and therefore her optimal behavior would be to always
choose the safe bundle, so that the lottery is meaningless (i.e., Leontief preferences).
When f <0, the individual overweights the probability that the lottery will yield the
higher prize (“elation seeking”). When 8 = —1, the subject cares only about the
element with the larger quantity (see Supplementary Figure 3b).

To use SV as a parametric regressor in our analysis, we calculated the value of
the Disappointment Aversion model with CRRA functional form at the chosen
bundle (x;, x,) in each trial i, using the subject’s recovered parameters (using the
MMI), B and p.

Assessing the NRUM and inconsistency. On each trial, we reconstructed the set
of bundles each subject encountered and calculated the SV using the parameters
elicited by MMI method (Fig. 3c). These correspond to the v;s in the proposed
model.

We calibrated two skewed distributions (the zero-mode Gumbel distribution
and the zero-mean log normal distribution) for the neural noise e; using the
observed inconsistency level of each subject. The standard deviation of the
distributions was chosen so that the average level of the Afriat inconsistency index
matched the observed index.

Based on the v;s and the calibrated distributions for e;, we calculated the random
utility values (¥;) for each alternative in every trial. For each trial, following value
maximization, the chosen bundle was the alternative with the highest random
utility value. We repeated this procedure for each subject 1,000 times for each
distribution. Hence, we obtained 1,000 simulated datasets for each subject (for each
of the two noise distributions).

Next, we tested whether the simulated datasets are compatible with our
interpretation of the neural results. Note that we cannot simply use the trial-
specific MMI index here, because we have already based the simulation on the
parameters elicited by MMI to calculate the v;s. This would amount to double-
dipping the data. Instead, we used the trial-specific Afriat index as a proxy for the
trial-specific MMI index (note they are highly correlated, Fig. 3e). For each
simulated trial, we calculated the noise of the chosen bundle as a proxy for the
valuation noise in the BOLD signal. We pooled these two series across simulations
and trials, and then assessed their correlation.

Whole-brain analysis of choice inconsistency. To identify the neural correlates
of choice inconsistency, we estimated a general linear model (GLM) with 11 pre-
dictors. The trial-by-trial inconsistency index trial-specific MMI and the trial-by-
trial SV, entered for the total trial duration up until the subject made a choice,
normalized and convolved with the canonical hemodynamic response function
(HRF). We modeled RT using a boxcar epoch function, whose duration was equal
to the RT of the trial’?. The other predictors included the price ratio of the budget
set (the slope), and the endowment measured by the safe portfolio on the 45
degrees line from the origin.

All these predictors were entered for the trial duration, normalized and
convolved with the HRF. In addition, six motion-correction parameters and the
constant were included as regressors of no interest to account for motion-related
artifacts.

ROI analysis of choice inconsistency. We also conducted a region of interest
(ROI) analysis, in order to increase the power of the statistical test. We defined the
vmPFC and vStr ROIs based on the masks provided by Bartra et al.2l. For the
dACC, we drew a 12 -mm sphere around the peak voxel that Kolling et al.+3
reported. For the PCC and V1 ROIs, we used neurosynth.org meta-analyses masks.
We then conducted the same RFX GLM reported above and correlated trial-
specific MMI and SV with BOLD activity extracted from each of the ROIs.

PPI analysis. The time series of the BOLD signal in each ROI was z-scored to
generate the time series of the neuronal signal for each source region as the
physiological variable in the PPI. We tested (separately) each parametric regressor,
SV and trial-specific MMI, as the psychological variable, suggesting that a given
region can be connected to distinct regions/networks depending on task context”!.
The psychological regressors were normalized and convolved with the canonical
HRF and entered into the regression model. An additional regressor represented
the interaction between the psychological and physiological factors, and indicated
in which areas there were significant differential functional connectivity with each
seed ROI. We modeled RT similarly to the whole-brain analysis, and used the price
ratio of the budget set and the endowment as control predictors. These predictors
were entered for the trial duration, normalized and convolved with the HRF as
well. In addition, six motion-correction parameters and the constant were included
as regressors of no interest to account for motion-related artifacts.

We used RFX for the group-level analysis, and set the threshold to p <0.0005
with cluster-size correction, similarly to the main GLM analysis. We hence ran six
models in total (3 ROIs x 2 psychological contexts).

Orthogonality analysis. To examine the neural footprints of the non-correlated
part of the SV and trial-specific MMI predictors, we used an orthogonality analysis.
We ran a clustered regression of trial-specific MMI on SV and obtained residuals e,
and similarly obtained residuals # from a clustered regression of SV on trial-
specific MMI. We repeated the REX-GLM as in the whole-brain analysis, but
replaced trial-specific MMI with €, and similarly ran the RFX-GLM replacing SV
with 7.

Measuring choice difficulty. Since each decision problem in our task is con-
tinuous, we cannot simply use ASV as a choice difficulty index. Moreover, choice
difficulty in our task is determined by the subject’s own preferences and not only by
the slopes of the budget sets. For example, a risk-averse subject might struggle with
steep slopes, as the temptation for allocating all tokens to one account rises. A risk-
seeking subject, on the other hand, will have difficulties in moderate slopes.
Therefore, we derive a novel measure for choice difficulty, which considers both
subject’s elicited parameters and the continuum of the budget set.

We discretized each budget line into 1000 possible bundles. We then calculated
the subjective value v;, ; of each bundle i along each budget set b for each subject s
using the parameters elicited by the MMI. Next, we subtracted v;;,; from the
maximal subjective value of that budget line to obtain a AV;,; measure for each
bundle along the budget set (analogous to taking the difference between two
options in a binary choice design). We then averaged all the AV, across the 1000
bundles, and normalized the result by the endowment of the given budget set to be
able to compare across trials. Formally, denote V},; = maxic;; . 1000)Vips- Then:

Z‘,\‘:,[Vb.f"(.hx] ®)
PR =
Choice Simplicity, , = Endowrment,
where i€ [1,...,1000] is the bundle (N = 1000); be [1,...,108] is the decision
problems and se [1,...,33] is the subject.

Difficult choices occur when the bundles along the budget line have similar
values to the maximum value (V,,,), making the options along the line relatively
similar, which results in an overall low index. Hence, the higher is our index, the
easier it is to make a choice, suggesting that trials with index values closer to 0, are
the more difficult choices. Hence, we refer to this index as a choice simplicity index.
The normalization with Endowment,, ; of the chosen bundle is aimed to minimize
the problem of over-scoring trials with higher endowments. In such cases, the
budget line is longer (further away from the origin), and therefore AV, is bigger
for the mere fact that the distance between bundles is bigger.

Controlling for changes in behavior. We control for an over-estimation of trial-
specific MMI values due to changes in behavior across blocks, which may increase
index values, though in fact subjects simply changed their preferences between
blocks and thus were actually consistent as long as their preferences were stable.
For every subject, we computed four different aggregate MMIs, based on the 27
trials in each block, rather than the 108 trials of the entire experiment. We
implemented the Leave-One-Out procedure on the aggregate MMI of each block to
generate trial-specific MMI-blocks. Accordingly, we also recovered different utility
functional parameters for every block and computed the trial-by-trial SV, with
respect to the block-specific parameters (SV-blocks). We ran the same RFX-GLM,
and used trial-specific MMI-blocks and SV-blocks as our inconsistency and value
modulation regressors, respectively.

Moreover, we classified subjects’ choice behavior in each block, and identified
eight subjects (out of 33) who changed behavior across blocks (Supplementary
Table 1). We thereafter ran the same RFX-GLM as in our main analysis (see
Whole-brain analysis of choice inconsistency section), but this time used trial-
specific MMI-blocks and SV-blocks only for the eight subjects who switched
strategies. For the rest of our sample, we used trial-specific MMI and SV.

Controlling for the misspecification. In order to rule out the possibility that our
results reflect the MMI’s misspecification element, we repeated our main analysis,
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using a different functional form. Halevy et al.*> show that changing the functional
form varies the misspecification element of the MMI, but the inconsistency element
remains unchanged. Thus, we elicited subjects’ preferences using a constant
absolute risk aversion (CARA) utility index with an absolute risk aversion para-
meter A (rather than CRRA utility index):

w(z) =1—e % A>0 (9)

Between-subjects analysis. We conducted a standard between-subject analysis
and examined if the brain areas that we found in our trial-by-trial analysis would
show up also in a basic between-subject analysis. We ran an RFX-GLM with one
predictor, a dummy for the trial identity. We ran the model in all our predefined
ROIs, i.e., vmPFC, dACC, bilateral vStr and PCC (see Region of Interest Analysis
section for details about the masking), as well as the mPFC/ACC cluster that was
correlated with the trial-specific MMI (MMI ROI). For each subject, in each ROI,
we extracted the average GLM-coefficient  over the course of the entire experi-
ment, to account for the average change in BOLD signal. We then correlated the
average change in BOLD signal in each ROI with aggregate-level inconsistency
indices—aggregate MMI, Afriat index, and number of GARP violations (see
Aggregate inconsistency indices section for details). We corrected our analysis for
multiple comparisons, using Bonferroni correction, and set p; < 0.05/(18 compar-
isons) = 0.0028 as our statistical threshold (Supplementary Table 3).

Functional localizers. In the motor imprecision functional localizer, subjects were
presented with linear graphs, and had to reach a black target using a trackball. It
resembled the main task, but excluded any numerical or value representation
(Supplementary Figure 1a). Subjects completed 27 trials, and had a maximum of 6 s
on each trial to reach the black target, followed by a variable ITI of 6 s (jittered
between trials).

Similarly, in the numerical execution imprecision localizer, subjects were
presented with linear graphs, and had to reach a target {x,y} coordinates
(Supplementary Figure 1b) on the graph. A title read their current {x,y} cursor
position at the top of the screen. The numerical localizer resembled the main task,
but excluded any value-based decision. Subjects completed 27 trials, and had a
maximum of 12 s on each trial to reach the {x,y} coordinates, followed by a variable
ITI of 9's (jittered between trials). In both localizers, the graphs were varied and
randomized across trials and subjects. We calculated motor and numerical
imprecisions as the Euclidean distance between the cursor position at the moment
the subject clicked the trackball, and the predefined target. In order to identify the
neural correlates of the motor/numerical imprecision, we used the trial-by-trial
motor/numerical imprecision as a predictor in an RFX GLM. Other predictors
included a boxcar epoch function for the trial duration to model RT, as well as the
graph’s slope. All these predictors were entered for the trial duration, normalized
and convolved with the HRF. In addition, six motion-correction parameters and
the constant were included as regressors of no interest to account for motion-
related artifacts.

Data and code availability

The computer code used for the computation of MMI and the other inconsistency
indices is available as an open source code at https://github.com/persitzd/RP-Toolkit.
The datasets generated and/or analyzed during the current study, statistical maps and the
rest of the computer code used to analyze further behavioral results, the imaging data and
NRUM is available on OSF at https://osf.io/8jdfh/.
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